Effects of Electrodeposition Conditions and Protocol on the Properties of Iridium Oxide pH Sensor Electrodes
نویسندگان
چکیده
The properties of iridium oxide pH sensors produced by electrochemically induced deposition on gold electrodes were examined as a function of the composition of the deposition solution, as well as the electrochemical deposition protocol. The composition of the Ir IV deposition solutions, which included oxalate or ethylene diamine tetraacetic acid complexing agent or no complexing agent, had no effect on the slope of the calibration curves. The slope of the calibration curves was shown to increase from ca. 49 to 76 mV/pH unit with the fractional coverage of gold substrates with iridium oxide. Increasing the film thickness beyond the full coverage did not further increase the slope of the calibration curves but resulted in a progressive increase of their intercept values. The method of deposition, which involved a constant current, single potential pulse, alternating potential pulse, or cyclic potential protocol, affected the maximum rate of pH response as well as the capacitance of the iridium oxide sensors. The latter two properties of the sensors were investigated using a microelectrochemical time-of-flight method with galvanostatic proton generation and potentiometric sensing. The alternating potential pulse and cyclic potential methods produced films of smaller rate of pH response and of smaller capacitance relative to the iridium oxide films of the same thickness produced by the other two methods. This is likely due to a smaller microscopic porosity of the films prepared by the potential pulse and cyclic potential methods. The maximum rate of pH response obtained with 50 nm thick iridium oxide sensors varied from ca. 7 to 23 V/s. The specific capacitance of the iridium oxide films varied from ca. 900 to 9000 F/cm3. © 2008 The Electrochemical Society. DOI: 10.1149/1.3001924 All rights reserved.
منابع مشابه
Fabrication of a needle-type pH sensor by selective electrodeposition
This manuscript reports on the development of a needle-type sensor for in situ on-site measurement of pH. Conventional pH microelectrode sensors are fabricated by pulling glass pipettes and applying ion-selective films at the tip. However, these sensors suffer from low fabrication yields and short sensor lifetime due to disruption or loss of the ion-selective membrane after repeated use. The de...
متن کاملDisposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film.
Potential cycling in the range from -0.2 to +1.2 V is used for the electrodeposition of hydrous iridium oxide films onto a screen-printed electrode from a saturated solution of alkaline iridium(III) solution. The iridium oxide redox couple shows a stable and obvious reversible redox, with the formal potential being pH dependent in the range 1-14. The properties, stability and electrochemical pr...
متن کاملOptimization of the FeCo nanowire fabrication embedded in anodic aluminum oxide template by response surface methodology
Anodic aluminum oxide (AAO) fabricated by two step anodization technique, is used as a template to synthesize FeCo nanowire arrays by AC electrodeposition technique. Response surface methodology (RSM) is applied to design the experiments, fit an empirical model and optimize the conditions to achieve the best magnetic properties. The magnetic properties, pore dimensions, composition and structur...
متن کاملSol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices
Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کامل